Fluid and Electrolyte Management Across the Age Continuum

Tamara M. Kear

Disorders of fluid and electrolytes are common in patients across the lifespan. Many factors have been found to be associated with the development of these imbalances. Dehydration, over-hydration, and salt and water deficits and overload have been associated with morbidity and mortality with populations at each end of the lifespan experiencing an increased risk (El-Sharkawy, Sahota, Maughan, & Lobo, 2014). This article focuses on the role total body water content, plasma proteins, kidney function, and drug metabolism have on the age-related physiology impacting fluid and electrolyte balance.

Total Body Water Content

Total body water varies with body fat content, age, and sex. Body water represents approximately 60% of body weight in young, lean males and 50% of body weight in females (Metheny, 2012). Body water is divided into two major compartments: extracellular fluid (ECF) and intracellular fluid (ICF). ECF is further divided into intravascular fluid (also known as plasma) and interstitial fluid. The interstitial fluid surrounds the cells. ECF comprises approximately 20% of an adult’s body weight (Metheny, 2012). Transcellular fluids are also a component of ECF and are found in the cerebrospinal column, pleural cavity, lymph system, joints, glandular secretions, and eyes. There is no significant daily gain or loss of transcellular fluid.

ICF is located inside the cells and comprises approximately 40% of an adult’s body weight (Metheny, 2012). While capillary walls and cell membranes separate ICF and ECF, ECF must be balanced with ICF. ECF is more readily lost from the body than ICF (McLafferty, Johnstone, Hendry, & Farley, 2014).

Fluid Losses

Fluid losses are categorized as sensible or insensible losses. Sensible losses are those that can be measured and include urine, feces, blood, wound and gastric drainage, and emesis. Insensible losses cannot be measured and include perspiration and fluid losses through breathing. Fever, increased respiratory rate and depth, and humidity impact the loss of fluid in individuals (McLafferty et al., 2014).

Age Considerations: Birth to Puberty

The body surface area of an infant is greater than that of an adult, relative to weight. Thus, infants generally lose a greater portion of water from the skin than adults. Infants have a high body fluid content that is approximately 70% of their body weight (Metheny, 2012). Infants also have more ECF, which makes them more vulnerable to fluid volume losses and deficits. By the end of the second year of life, the total body fluid percentages near those of adults. At puberty, total body water composition is attained, and the onset of sex differences related to body weight percentages occurs (Metheny, 2012).

Age Considerations: Adulthood

After age 40 years, mean total body water decreases in relation to body weight, yet sex difference body weight percentages remain. Between ages 40 to 60 years, total body water decreases to 55% in the male population and 47% in women (Metheny, 2012). By age 60 years, the male population has a total body water percentage of approximately 52%, with 46% in the female population (Metheny, 2012; Severs, Rookmacker, & Hoorn, 2015).

Plasma Proteins

Plasma proteins (albumin, fibrinogen, prothrombin, and gamma globulins) constitute approximately 6% to 7% of the blood plasma. Plasma proteins maintain osmotic pressure,
increase blood viscosity, and assist in maintaining blood pressure (McGloin, 2015). The liver synthesizes all plasma proteins except for gamma globulins, thus explaining the rationale for coagulopathies and proteins imbalances commonly found in patients with liver dysfunction and failure. Albumin plays an important role in maintaining fluid homeostasis. When fluid filters through a capillary, albumin remains in the decreasing volume of water because the large molecular size of albumin does not pass through the capillary membrane with ease. This increased concentration of albumin pulls fluid back into the capillaries (plasma colloid osmotic pressure). Essentially, albumin plays the role of a “fluid magnet.”

Kidney Function

The kidneys play a vital role in fluid, electrolyte, and acid-base balance. A healthy kidney filters approximately 180 liters of plasma a day and produces approximately 1.8 liters of urine a day (McGloin, 2015). As kidney function declines in patients with chronic kidney disease (CKD), individuals lose the ability to filter the plasma, and fluid and electrolyte imbalances result. The greatest electrolyte concerns for patients with CKD are imbalances in potassium and calcium levels due to the impact on cardiac function.

Age Considerations: Birth to Early Childhood

Infants and young children excrete urine at a higher rate than adults because the higher metabolic rates in children produce more waste. Additionally, an infant’s kidneys cannot concentrate urine until around 3 months of age and remain less efficient than adult kidneys until around age of 2 years (Bekhof, van Asperen, & Brand, 2013).

Age Considerations: Adulthood

As the adult ages, the kidney loses function. This leads to an impaired ability to secrete potassium, excrete hydrogen ions, retain sodium, and reabsorb water resulting in dysnatremia and hypovolemia (Lindner, Pförtmüller, Leichtle, Fiedler, & Exadaktylos, 2014). The older adult also experiences decreases in renal blood flow, glomerular filtration, creatinine clearance, and the ability to concentrate urine. In the presence of dehydration or hypovolemia, decreased blood flow to the kidney also places the individual at risk for acute kidney injury (AKI).

Drug Metabolism

The cytochrome P-450 enzyme system in the small bowel and liver is the most important known system for drug metabolism (Metheny, 2012). Drug metabolism and elimination vary with age, and with kidney and liver function, and depend upon the drug, route of administration, and dose.

Age Considerations

Phenytoin, barbiturates, analgesics, and cardiac glycosides have plasma half-lives two to three times longer in neonates than adults (Lindner et al., 2014). As liver and kidney elimination decrease with age, drug levels increase, and toxicity may slowly develop. Diuretics are of particular concern and will be discussed later in this article.

Nursing’s Role in Fluid and Electrolyte Balance

Nurses must employ several strategies to optimize fluid and electrolyte balance in individuals entrusted to their care. Such strategies include assessment of fluid and electrolyte status, prevention strategies, and fluid and electrolyte replacement. These strategies focus on managing fluid volume excess and fluid volume deficit because fluid balance is determined by daily gains and losses. Most daily intake of water is oral, with a small percentage coming from food and metabolic processes. The majority of body fluid losses comes from the formation of urine.

Assessment of Fluid Volume Excess

Compromised regulatory systems, such as heart failure, kidney failure, cirrhosis, and steroid use, may contribute to fluid volume excess. High-sodium diets and drugs, or preparations rich in sodium, such as Fleet enema, sodium bicarbonate, and Alka-Seltzer®, lead to fluid retention and fluid volume excess. Further, overzealous administration of 0.9% sodium chloride or Ringer’s lactate solution can contribute to fluid volume excess and may be compounded if cardiac, kidney, or liver function is impaired. Assessment findings in an individual with fluid volume excess are found in Table 1 (McGloin, 2015).

Assessment of Fluid Volume Deficit

The loss of fluid can be related to many pathophysiological causes or a decrease in oral intake. Gastrointestinal (GI) fluids may be lost due to vomiting, diarrhea, excessive ostomy drainage, or gastric suctioning. Polyuria is another etiological factor that leads to fluid volume deficit. Polyuria may be related to diuretic, kidney failure, hyperosmolar tube feedings, diabetes insipidus, and diabetes mellitus (Metheny, 2012). Conditions such as excessive sweating and fevers result in increased fluid losses.

Fluid loss from a process called third-spacing may also occur when fluid accumulates in areas that normally have little to no fluid. In third-spacing, fluid shifts from the intravascular space into the interstitial space between cells. Third-spacing of fluid results in decreased fluid in the vascular space as plasma is shifted into the interstitial space. Third-spacing of fluid may occur in the presence of trauma, surgery, burns, sepsis, pancreatitis, GI obstruction, and liver failure that leads to ascites. Assessment findings in an individual with fluid volume deficit are found in Table 2 (McGloin, 2015).

Electrolyte Balance

There are several electrolytes in the human body, and each electrolyte
has specific functions. Electrolytes are found in the intracellular and extracellular spaces and move to maintain balance and electroneutrality. The extracellular electrolytes include sodium, chloride, calcium, and sodium bicarbonate. The intracellular electrolytes include potassium, phosphate, and magnesium.

Sodium. The role of sodium is to attract fluid and preserve ECF volume. Sodium has a vital role in maintaining fluid balance and is responsible for the osmolarity of plasma (McLafferty et al., 2014). Sodium also helps transmit impulses in the nerves and muscle fibers. Sodium imbalances can be related to a number of pathophysiologic conditions (see Table 3) or certain drugs. Drug-induced hyponatremia may result from the use of non-steroidal anti-inflammatory drugs (NSAIDs), selective serotonin reuptake inhibitors, cyclophosphamides, omeprazole, desmopressin, and oxytocin. Drug-induced hypernatremia may result from 3% and 5% hypertonic saline solution, sodium bicarbonate, and excessive administration of 0.9% sodium chloride (Lindner et al., 2014).

Chloride. Chloride is mainly produced in the stomach as hydrochloric acid, so chloride levels may be impacted by GI disorders because most of it is absorbed in the intestines, with a small portion lost in the feces. Chloride and bicarbonate have an inverse relationship. Diuretics increase the risk of chloride loss and deficiencies.

Calcium. Ninety-nine percent (99%) of calcium is found in the bones, while 1% is in the teeth and soft tissues (McLafferty et al., 2014). Serum protein abnormalities can influence total serum calcium levels. Ionized calcium levels measure the various forms of calcium located in the extracellular fluid. Calcium and phosphate have an inverse relationship. Children have higher levels of serum calcium than adults, and older adults have a decreased normal calcium range. The pathophysiology of hypocalcemia and hypercalcemia are shown in Table 4 (Gooch, 2015; Lindner et al., 2014; Metheny, 2012).
Bicarbonate. Bicarbonate plays an important role in respiratory function. Lack of bicarbonate causes acidosis, and the respiratory rate increases to blow off more carbon dioxide. Excess bicarbonate causes alkalosis, and the respiratory rate decreases to retain carbon dioxide. A change in pH impacts electrolyte balance, enzyme activity, muscle contractions, and cellular function.

Potassium. Potassium is the most abundant intracellular cation (Eliacik et al., 2015). Potassium plays a role in maintaining normal action potentials in muscle and nerve cells, as well as playing a role in maintaining acid-base balance (Crawford, 2014). Small changes in serum potassium levels impact neuromuscular and cardiac functions. Kidney disease, injury, drugs, treatments, GI losses, cellular shifts, sweating, and nutritional intake affect potassium levels (see Table 5) (Crawford, 2014; Eliacik et al., 2015; Metheny, 2012). Medications that may lead to hyperkalemia are found in Table 6 (Crawford, 2014; Eliacik et al., 2015; Metheny, 2012).

Phosphorus. Phosphate plays an important role in cell membrane, muscle, and neurologic functions. Eighty-five percent (85%) of phosphate is found in the bones and teeth, 14% is found in the soft tissues, and 1% in the ECF. Alcoholism, burns, kidney function, refeeding syndrome, and dietary intake influence phosphate levels (Gooch, 2015). Antacids, laxatives, and herbal supplements can impact the absorption of phosphate (McLafferty et al., 2014). In infants, the use of cow’s milk instead of breastfeeding or formula can elevate phosphate levels.

Magnesium. Magnesium does not get a great deal of attention as an electrolyte. It plays an important role in carbohydrate metabolism and protein synthesis. Magnesium and albumin are linked. Low serum albumin levels (often from poor dietary intake or liver disease) result in low magnesium levels (Vellissaris, Karamouzos, Pierrakos, Aretha, & Karanikolas, 2015). Gastrointestinal and kidney function losses, alcoholism, refeeding

Table 4

<table>
<thead>
<tr>
<th>Hypocalcemia</th>
<th>Hypercalcemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Surgical hypoparathyroidism</td>
<td>- Malignancies</td>
</tr>
<tr>
<td>- Acute pancreatitis</td>
<td>- Primary hyperparathyroidism</td>
</tr>
<tr>
<td>- Hyperphosphatemia</td>
<td>- Kidney transplant</td>
</tr>
<tr>
<td>- Inadequate vitamin D</td>
<td>- Immobilization</td>
</tr>
<tr>
<td>- Alcoholism</td>
<td>- Thiazides, lithium, large doses of vitamins A and D, theophylline</td>
</tr>
<tr>
<td>- Sepsis</td>
<td>- Hydration, mobilization, risk for cardiac arrest, risk for fracture, risk for digoxin toxicity</td>
</tr>
<tr>
<td>- Loop diuretics, phenobarbital, dilantin, citrate, calcitonin</td>
<td>- Do not mix IV calcium with sodium bicarbonate or phosphate (precipitate forms)</td>
</tr>
</tbody>
</table>

Sources: Gooch, 2015; Metheny, 2012.

Table 5

<table>
<thead>
<tr>
<th>Hypokalemia</th>
<th>Hyperkalemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Decreased dietary intake</td>
<td>- Increased dietary intake</td>
</tr>
<tr>
<td>- Excess fluid loss</td>
<td>- Rapid infusion of potassium containing solution</td>
</tr>
<tr>
<td>- Kidney losses (diuretics, steroids, diuretic phase of acute kidney injury)</td>
<td>- Salt substitutes (potassium chloride)</td>
</tr>
<tr>
<td>- Nausea, vomiting, diarrhea</td>
<td>- Decreased kidney function</td>
</tr>
<tr>
<td>- Laxative abuse or overuse</td>
<td>- Release of potassium from tissue trauma, burns, crush injuries, catabolism, and hemolysis</td>
</tr>
<tr>
<td>- Shift of potassium from extracellular fluid to cells (hyperthermia, sodium polystyrene sulfonate, insulin and sodium bicarbonate administration)</td>
<td>- Shift of potassium from cells to the extracellular fluid (beta-blockers, acidois)</td>
</tr>
</tbody>
</table>

Sources: Crawford, 2014; Eliacik et al., 2015; Metheny, 2012.

Table 6

<table>
<thead>
<tr>
<th>Medications that Cause Hyperkalemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>- ACE inhibitors</td>
</tr>
<tr>
<td>- Angiotensin receptor blockers</td>
</tr>
<tr>
<td>- Antifungals</td>
</tr>
<tr>
<td>- Beta-blockers</td>
</tr>
<tr>
<td>- Calcium channel blockers</td>
</tr>
<tr>
<td>- Antibiotics (penicillin G)</td>
</tr>
<tr>
<td>- Cyclosporine</td>
</tr>
<tr>
<td>- Digoxin</td>
</tr>
<tr>
<td>- Aldosterone antagonist</td>
</tr>
<tr>
<td>- Heparin</td>
</tr>
<tr>
<td>- Hypertonic solutions (mannitol, glucose)</td>
</tr>
<tr>
<td>- Non-steroidal anti-inflammatory drugs (NSAIDs)</td>
</tr>
<tr>
<td>- Pentamidine</td>
</tr>
<tr>
<td>- Tacrolimus</td>
</tr>
<tr>
<td>- Potassium sparing diuretics</td>
</tr>
</tbody>
</table>

Sources: Crawford, 2014; Eliacik et al., 2015; Metheny, 2012.
syndrome, and certain drugs, such as magnesium–containing laxatives, diuretics, cyclosporine, and mannitol, may impact magnesium levels (Velissaris et al., 2015).

Fluid and Electrolyte Imbalance Prevention Strategies

Strategies to manage fluid and electrolyte imbalances occur across the life span and should involve education, medication review, accurate intake and output measurements and recordings, and fluid and electrolyte replacement. Management in each of these categories may vary based upon the age of the individual and the setting.

Accuracy of Intake and Output Measurement and Recordings

In the acute care setting, several studies have focused on the importance of accurate intake and output measurement and recordings. Reid and colleagues (2004) discovered that staff shortages, lack of proper training, and limited time were barriers to accurate intake and output measurement and recordings.

Best practice indicates that intake and output measurement and recordings are an interprofessional responsibility. They are not primarily the responsibility of the nursing assistant or patient care technician, but a responsibility of all staff. Success has been demonstrated in improving accuracy when measurement and recordings are incorporated into hourly rounds. Providing cups that have fluid volume markers and easy-to-use charts can help involve patients. Subtotaling of intake and output amounts should be ongoing or several times as day, as opposed to at the end of an 8- or 12-hour shift (Reid et al., 2004).

Children

Education related to maintaining fluid and electrolyte balance in children is often targeted at parents or guardians. Such education should include the important fact that children can quickly become dehydrated or fluid overloaded. In 1957, Holliday and Segar developed a paradigm for fluid replacement in children that estimates water losses based on weight, energy expenditure, and healthy physiologic losses. This paradigm supported the use of hypotonic replacement solutions. Evidence over the last two decades indicates that this paradigm places the child at risk for hyponatremia and that isotonic solutions should be considered when using this replacement formula (Cavari, Pitfield, & Kissoon, 2013).

Nausea, vomiting, and diarrhea can lead to fluid volume deficit. Nutritional intake must be carefully investigated in a child with dehydration. The nurse should inquire about the type, method, amount, temperature, and frequency of fluid intake at home. Parents should be educated to avoid diluting formula and to understand that excessive water intake, especially if the child is febrile, will lead to hyponatremia (Bekhof et al., 2013). Tap water enemas can also cause hyponatremia. If the child has a decreased fluid intake, the nurse can educate parents to provide a comfort before offering fluid. Comfort may include a warm, dry environment with a stuffed animal. The airway should also be cleared prior to offering fluid.

Older Adults

Imbalances in older adults are often related to medication regimens, decreased dietary intake, and pathophysiologic conditions. The older adult should be educated that fluid and electrolyte imbalances may be related to prolonged laxative use and abuse for chronic constipation or diarrhea. Imbalances also occur from the use of diuretics often prescribed for cardiac and kidney disorders (Lindner et al., 2014). Diagnostic test preparations (particularly for GI studies) or periods of “nothing by mouth” can lead to imbalances. There is a growing body of evidence that supports the need for the older adult to take vitamin D supplements for deficiencies. Individuals are often prescribed a vitamin D supplement accompanied by a calcium supplement. When providing teaching and plans of care the patient may use in the home environment, keep in mind the sensory impairments that may be experienced by the older adult population (Lindner et al., 2014).

The nurse should conduct a careful medication reconciliation and review medications with the older adult or caregiver. Assess for medications that may cause fluid and electrolyte imbalances. Diuretics, cardiac medications, electrolyte supplements, and laxatives should be thoroughly reviewed as an essential safety measure. Diuretic agents can provide a wide range of electrolyte imbalances based upon the type of diuretic. Thiazides inhibit sodium reabsorption and can lead to the loss of sodium, chloride, potassium, and a slight decline in calcium levels. Loop diuretics act in the Loop of Henle in the kidney (Lindner et al., 2014). This classification causes loss of sodium, chloride, and potassium. Some patients on loop diuretics require increased consumption of dietary potassium or potassium supplements (Lindner et al., 2014). Potassium-sparing diuretics conserve potassium by inhibiting the action of aldosterone. This diuretic classification reduces potassium excretion, and elevated potassium levels may result. Potassium supplements are contraindicated with potassium-sparing diuretics due to the risk of hyperkalemia (Lindner et al., 2014). Potassium-sparing diuretics are often combined with thiazides.

Fluid and Electrolyte Balance

Nurses play a major role in the management of fluid and electrolyte balance. While the concept is simple, the fundamentals of fluid and electrolyte balance focus on increasing fluid intake when fluid loss increases (unless it is contraindicated for reasons related to cardiac, liver, respiratory, or kidney disorders) and decrease fluid intake in many cases when fluid loss decreases. Nurses play a key role in offering fluids to young children, individuals with physical or cognitive impairments, and older adults. Acutely ill patients also rely on nurses.
to provide fluid (McGloin, 2015). This population may include patients with sepsis, diuresis from AKI, respiratory acidosis, burns, and excessive gastrointestinal or wound losses because these individuals are at risk for dehydration. Fluid therapy should be guided by the same principles as drug therapy regarding administration principles and monitoring of the patient's response. Researchers continue to investigate the fluid and solutions to be administered to achieve the best outcomes. Severs and colleagues (2015) concluded that infusions of normal saline solution led to more kidney injury, need for renal replacement therapies, blood transfusions, and perioperative infections than balanced crystalloids. Balanced crystalloids, such as Ringer's lactate solution with acetate, Hartmann solution, and Plasma-Lyte, loosely resemble the ionic composition of plasma.

Conclusion

Maintaining balance of fluid and electrolytes in the body is essential to overall functioning and health. A slight imbalance in fluid and/or electrolytes may have a profound impact on a patient. Symptoms related the fluid and/or electrolyte imbalances vary based upon the deficiency, and nursing management is patient- and age-specific. As members of the interprofessional team, nurses play an important role in patient care and management. Electrolyte deficits are often managed by replacement, while electrolyte excesses are treated by restricting additional intake of electrolytes and/or administering medications or fluids to decrease the electrolyte concentration. For example, patients with hyperkalemia may be administered sodium polystyrene sulfonate (Kayexalate) to facilitate excretion of potassium via the gastrointestinal tract.

Patients experiencing fluid volume excess unless contraindicated. Careful monitoring for changes in fluid and electrolyte status, comfort, vital signs, and physical assessment findings are essential nursing care priorities.

References

Fluid and Electrolyte Management Across the Age Continuum

Complete the Following (please print)

Name: ________________________________
Address: ________________________________
City: ________________________________
Telephone: ___________ Email: ________________________________
ANNA Member: ☐ Yes ☐ No Member #: ________________________________

Payment: ☐ Check Enclosed ☐ American Express ☐ Visa ☐ MasterCard

Total Amount Submitted: ________________________________
Credit Card Number: ________________________________ Exp. Date: ________________________________
Name as it Appears on the Card: ________________________________

Note: If you wish to keep the journal intact, you may photocopy the answer sheet or access this activity at www.annanurse.org/journal

Learning Outcome
After completing this learning activity, the learner will be able to discuss the role nurses play in the management of fluid and electrolyte balance.

Learning Engagement Activity
For more information on this subject, please see:

Evaluation Form (All questions must be answered to complete the learning activity. Longer answers to open-ended questions may be typed on a separate page.)

1. I verify I have completed this education activity. ☐ Yes ☐ No

2. The learning outcome could be achieved using the content provided. (Circle one) Strongly Disagree Strongly Agree
 1 2 3 4 5

3. I am more confident in my abilities since completing this education activity. (Circle one) Strongly Disagree Strongly Agree
 1 2 3 4 5

4. The content was relevant to my practice. (Circle one) Strongly Disagree Strongly Agree
 1 2 3 4 5

5. Commitment to change practice (select one):
 a. I will make a change to my current practice as the result of this education activity.
 b. I am considering a change to my current practice.
 c. This education activity confirms my current practice.
 d. I am not yet convinced that any change in practice is warranted.
 e. I perceive there may be barriers to changing my current practice.

6. What information from this education activity do you plan to implement in practice? What barriers are there to changing your current practice?

7. This was an effective method to learn this content. ☐ Yes ☐ No

8. This education activity was free of bias, product promotion, and commercial interest influence. ☐ Yes ☐ No

9. If no, please explain: ________________________________

Nephrology Nursing Journal Editorial Board Statements of Disclosure
In accordance with ANCC governing rules Nephrology Nursing Journal Editorial Board statements of disclosure are published with each CNE offering. The statements of disclosure for this offering are published below.

Paula Dutka, MSN, RN, CNN, disclosed that she is a coordinator of Clinical Trials for the following sponsors: Amgen, Rockwell Medical, Keryx, Biopharmaceuticals, Akebia Therapeutics, and Dynavax Technologies.
Norma J. Gomez, MBA, MSN, CNN, disclosed that she is a member of the ZS Pharma Advisory Council.
Tamara M. Kear, PhD, RN, CNS, CNN, disclosed that she is a member of the ANNA Board of Directors, serves on the Scientific Advisory Board for Kibow Biotech, Inc., and is employed by Fresenius Kidney Care as an acute hemodialysis RN.
All other members of the Editorial Board had no actual or potential conflict of interest in relation to this continuing nursing education activity.

This article was reviewed and formatted for continuing contact hour credit by Beth Ullrich, EdD, RN, FACHE, FAAN, Nephrology Nursing Journal Editor, and Sally Russell, MN, CMSRN, CPP, ANNA Education Director.
American Nephrology Nurses Association – Provider is accredited with distinction as a provider of continuing nursing education by the American Nurses Credentialing Center’s Commission on Accreditation.
ANNA is a provider approved by the California Board of Registered Nursing, provider number CEP 00910.
This CNE article meets the Nephrology Nursing Certification Commission’s (NNCC’s) continuing nursing education requirements for certification and recertification.